skip to main content


Search for: All records

Creators/Authors contains: "Green, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One Hundred and Fifty kilometer echoes are a type of strong radar echo observed in the valley region of the equatorial ionosphere, whose origin was long standing mystery. Recently, a new upper hybrid (UH) instability theory, driven by high energy photoelectrons, has been proposed to explain most features of 150 km echoes. However, this instability excites high frequency electron modes, whereas radars observe low frequency ion modes. To explain 150 km echoes, the UH instability must ultimately excite ion acoustic modes. This paper describes a set of particle‐in‐cell simulations used to study how photoelectrons interacting with a cold background plasma generate UH waves, and how these drive ion acoustic waves measured by radars. We implement a new electron‐N2collision algorithm to better model the bump on tail features of the photoelectron distribution in the valley region. These simulations show that photoelectrons drive unstable UH waves that strongly enhance ion acoustic waves. We also show a strong frequency dependence on power in the ion line, which explains observational differences between radars, most notably the lack of echoes at ALTAIR. The photoelectron driven UH instability successfully reproduces most features of 150 km echoes associated with naturally enhanced incoherent scattering.

     
    more » « less
  2. Abstract As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information of executing specific tasks for a single QC. On the other hand, a comparison between different QCs preparing nominally the same arbitrary circuit provides an insight for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform state fidelities. 
    more » « less
  3. Abstract

    Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an Advanced LIGO detector. Annular ring heaters that compensate central heating are used to tune the optical mode away from multiple problematic mirror resonance frequencies. We develop a single-cavity approximation model to simulate the optical beat note frequency during the central heating and ring heating transient. An experiment of dynamic ring heater tuning at the LIGO Livingston detector was carried out at 170 kW circulating power and, in agreement with our model, the third order optical beat note is controlled to avoid instability of the 15 and 15.5 kHz mechanical modes. We project that dynamic thermal compensation with ring heater input conditioning can be used in parallel with acoustic mode dampers to control the optical mode transient and avoid parametric instability of these modes up to Advanced LIGO’s design circulating power of 750  kW. The experiment also demonstrates the use of three mode interaction monitoring as a sensor of the cavity geometry, used to maintain theg-factor product tog1g2= 0.829 ± 0.004.

     
    more » « less
  4. null (Ed.)
  5. Free, publicly-accessible full text available May 1, 2024
  6. Abstract

    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers.

     
    more » « less
  7. Abstract

    Lightning generated whistlers (LGWs) play an important role in precipitating energetic electrons in the Earth's inner radiation belt and beyond. Wave burst data from the Van Allen Probes are used to unambiguously identify LGWs and analyze their properties atL < 4 by extending their frequencies down to ~100 Hz for the first time. The statistical results show that LGWs typically occur at frequencies from 100 Hz to 10 kHz with the major wave power below the equatorial lower hybrid resonance frequency, and their wave amplitudes are typically strong atL < 3 with an occurrence rate up to ~30% on the nightside. The lifetime calculation indicates that LGWs play an important role in scattering electrons from tens of keV to several MeV atL < ~2.5. Our newly constructed LGW models are critical for evaluating the global effects of LGWs on energetic electron loss atL < 4.

     
    more » « less